
Exploration by Exploitation: Curriculum Learning for
Reinforcement Learning Agents through

Competence-Based Curriculum Policy Search

Tabitha Edith Lee∗
Mila & Université de Montréal

Nan Rosemary Ke†
Mila – Quebec AI Institute

Sarvesh Patil†
Carnegie Mellon University

Annya Dahmani‡
Univ. of California, Berkeley

Eunice Yiu‡

Univ. of California, Berkeley
Esra’a Saleh

Mila & Université de Montréal

Alison Gopnik
Univ. of California, Berkeley

Oliver Kroemer§
Carnegie Mellon University

Glen Berseth§

Mila & Université de Montréal

Abstract

We present CURATE, an algorithm for automatic curriculum learning for rein-
forcement learning agents to solve a difficult target task distribution with sparse
rewards. Initially, due to fundamental exploration challenges without informed pri-
ors or specialized algorithms, agents may be unable to consistently receive rewards,
leading to inefficient learning. Through “exploration by exploitation,” CURATE
dynamically scales the task difficulty to match the agent’s current competence.
By exploiting its current capabilities that were learned in easier tasks, the agent
improves its exploration in more difficult tasks. While training the agent, CURATE
conducts policy search in the curriculum space to learn a task distribution for the
agent corresponding to the easiest unsolved tasks. As the agent’s mastery grows, the
learned curriculum adapts correspondingly in an approximately easiest-to-hardest
fashion, efficiently culminating in an agent that can solve the target tasks. Our
experiments demonstrate that the curricula learned by CURATE achieve greater
sample efficiency for solving the target tasks than state-of-the-art algorithms and
most baselines. Although an incremental, easiest-to-hardest curriculum was more
performant for one-dimensional curricula, CURATE shows promising performance
for two-dimensional curricula where the optimal task sequencing is not obvious.

1 Introduction

The advent of reinforcement learning (RL) [1, 2] with deep neural networks [3, 4] has ushered
in a promising era of impressive milestones in sequential decision making for deep RL [5–12].
Yet, without models, inductive biases, expert trajectories, or dense rewards, model-free deep RL
algorithms are markedly sample inefficient due to fundamental challenges with exploration. Initially,
the RL agent’s actions are essentially random, requiring many interactions with the environment
before the agent can learn useful behaviors that accrue rewards. However, agent learning can be
structured through curriculum learning [13], which specifies how training data should be sequenced
in order to achieve two broad aims [14]: to guide training (i.e., increase learning sample efficiency)
and to denoise training (i.e., improve learning robustness and generalization through focus on high-

∗Work also conducted while at Carnegie Mellon. Correspondence: tabitha-edith.lee@mila.quebec
†Equal contribution. ‡Equal contribution. §Equal supervision.

First Exploration in AI Today Workshop at ICML (EXAIT at ICML 2025).

confidence training data regimes). Indeed, the effectiveness of introducing concepts in an orderly,
structured fashion also has support from cognitive neuroscience [15] and effective pedagogy such as
problem-based learning and assisted discovery learning [16–19], where knowledge arises from both
learner self-discovery of innovations and timely instructor interventions.

For reinforcement learning, the advantages of improving sample efficiency, generalization, and
exploration through a curriculum are generally recognized [20–22]. Indeed, achieving the goal of
automatic curriculum learning — automatically learning the optimal curricula for any domain —
would have far-reaching implications for the field of reinforcement learning, leading to the de facto
standard for training RL agents and the significant impact it would entail. However, an automated
way of selecting the curriculum remains an open problem, as previous literature suggests that, in
the words of Bengio et al. [13], “some curriculum strategies work better than others.” Insight from
evolutionary algorithms for open-ended learning [23, 24] suggest that innovations can arise in a
nonlinear, spontaneous fashion. Conversely, for reformulating single-task RL as multi-task RL with
a one-dimensional curriculum, it has been argued that solving tasks in an easy-to-hard fashion is
optimal [25], but it is unclear how this insight extends to multiple dimensions. Therefore, it is not
generally obvious in what sequence the tasks should be visited for a curriculum. In light of these
questions, curricula are often constructed manually by human designers in an ad hoc fashion, leading
to hand curricula that are tailor-made for specific domains but do not generalize to others.

To answer these questions, we introduce CURATE (Curriculum Agent for Targeted Exploration,
App. A), an automatic curriculum learning algorithm for training a model-free, on-policy reinforce-
ment learning agent to solve a difficult target task distribution with sparse rewards. Our approach
overcomes fundamental exploration challenges by conducting exploration by exploitation, as coined
by Leibo et al. [26].1 Specifically, CURATE adapts the difficulty of the training tasks to the agent’s
current capabilities, or competence, through curriculum policy search. Initially, the agent has not
learned useful behaviors, so relatively easier tasks ensure that random exploration is (relatively more)
viable. Then, as the agent’s competence grows, more difficult training tasks are selected to match the
current capabilities of the agent. In other words, the agent improves its ability to explore in more
challenging tasks by exploiting its current capabilities that were gained from previous easier tasks.
In this way, CURATE trains an RL agent through an approximately easiest-to-hardest progression,
quickly training the agent to complete the target task distribution at the end of the curriculum.

2 Related work

Curriculum Learning for Reinforcement Learning As formalized by Bengio et al. [13], cur-
riculum learning concerns how to meaningfully organize data for training machine learning models,
including those used for reinforcement learning. In this section, we identify a few relevant works in
curriculum learning for RL; please refer to Narvekar et al. [20], Portelas et al. [21], and Parker-Holder
et al. [22] for comprehensive surveys. Graves et al. [27] introduce a general curriculum learning
method based on a nonstationary multi-armed bandit algorithm. Wang et al. [23, 24] show that
curricula can emerge from co-evolving environments and agents. Portelas et al. [28] introduce
ALP-GMM, a Gaussian mixture model in the parameter space of the environment. Algorithms from
the Unsupervised Environment Design [29] and Dual Curriculum Design [30] frameworks yield
implicit curricula that emerge from unsupervised learning. For the case of reinforcement learning, Li
et al. [25] proposed that, under certain assumptions, solving tasks from easiest to hardest is optimal.
Our algorithm, CURATE, is most similar to Portelas et al. [28] and Li et al. [25]. CURATE also
maintains a task distribution similar to ALP-GMM [28], but the curricula learned by CURATE are
driven by seeking out the easiest set of unsolved tasks, leading to an approximately easiest-to-hardest
curriculum that is similar to Li et al. [25] to maximize learning at the frontier of agent capability.

Unsupervised Environment Design and Dual Curriculum Design First introduced by Dennis
et al. [29], the Unsupervised Environment Design (UED) paradigm provides a framework wherein
parameters of an underspecified environment are varied by a teacher to produce distributions over
environments for a student learner. This paradigm can support various teaching modes, such as
domain randomization, minimax regret, or a “environment-generating adversary” [29] in the PAIRED

1Leibo et al. describes “exploration by exploitation” as a form of exploration in agents that continuously
adapt to exploit their abilities in non-stationary environments [26]. In our work, our environments are not
non-stationary, but the training distribution is made non-stationary by the learned curriculum policy.

2

algorithm. Jiang et al. [30] unifies the UED framework with prior work in replaying experiences
with Prioritized Level Replay (PLR) [31] to form the Dual Curriculum Design (DCD) framework,
wherein the student learns from either an environment-generating teacher (as in UED) or a teacher
that selects past experiences to replay (as in PLR). In so doing, Jiang et al. introduced REPAIRED
(replay-augmented PAIRED) and an extension of PLR, Robust PLR (also stylized as PLR⊥), in
which gradient updates only occur on replayed levels. Later, Parker-Holder et al. [32] introduced
ACCEL, an evolutionary-based algorithm that randomly mutates levels starting from environments
of minimal complexity. Other UED algorithms include MAESTRO [33], the work of Mediratta et
al. [34] to stabilize PAIRED, and ReMiDi [35]. Our algorithm, CURATE, can be placed within the
DCD framework by functioning as a teacher that offers levels that are at the leading edge of the
student’s competence as determined by feedback from the student through sample-based evaluations.

3 Preliminaries

3.1 Underspecified POMDPs

The agent learns within an Underspecified Partially Observable Markov Decision Processs (UP-
OMDP) framework [29]. The UPOMDP defines a distribution of Partially Observable Markov
Decision Process (POMDP) tasks [36, 37] as determined by the selection of environment parameters.
The UPOMDP is defined as follows:

M = ⟨A, O,Θ,SM, TM, IM,RM, γ⟩ (1)
where a ∈ A is a set of actions, o ∈ O is a set of observations, θ ∈ Θ is a set of environment
parameters, and γ is a discount factor for future rewards. The remainder of the UPOMDP tuple
is defined with respect to the chosen environment parameters θ and are thus superscripted byM.
Therefore, for the POMDPMθ specified by θ, s ∈ SM : S ×Θ is a set of states from state space
S that are not observable to the agent, TM : S × A × Θ → S defines the transition function,
IM : S ×Θ→ O is the observation (i.e., introspection) function, and R ∈ RM : S ×Θ→ R is the
reward function. A task is considered solved if its reward exceeds a solved threshold RS . Through
reinforcement learning, the agent learns a policy π(a|o) from maximizing the objective J(π), the
expected sum of discounted rewards over trajectories τ with maximum timesteps T :

J(π) = E
τ∼π

[

T∑
i=0

γiRi] (2)

Assumptions In principle, the UPOMDP framework allows a temporally-varying trajectory of
environment parameters, but in practice, we are concerned with environment parameters that only
specify the construction of the initial scene via the underspecified state space SM. In this view, our
use of UPOMDPs is similar to Contextual MDPs [38–40]. We also assume that the environment
parameter space Θ is disentangled, i.e., each dimension controls a single factor of variation.

3.2 Curriculum learning within UPOMDPs

Our problem addresses automatic curriculum learning within a UPOMDP for solving a particular
target task distribution that is initially challenging or impossible for the agent to complete. Under the
assumption that the environment parameters Θ are disentangled, curriculum learning can be conducted
within the axes of generalization of the UPOMDP’s curriculum space, i.e., the space of environment
parameters Θ. In this work, tasks are ordered by difficulty within the axes of generalization, so that
increasing θ generally yields more difficult tasks. Although these assumptions on the structure of
the curriculum space are strong, they permit systematic evaluation of different curriculum learning
algorithms in this work. The easiest tasks occur at min(Θ), and the hardest tasks occur at max(Θ).
Specifically, the target task distribution is defined by environment parameters θt = max(Θ), and the
POMDP that specifies this target task is thereforeMθt . The time-varying sequence of tasks that
arises from a curriculum learning algorithm is called a curriculum C.

4 Methodology

The goal of CURATE is to automatically learn a curriculum C for training a control policy π to
complete a difficult target task distributionMθt . To do this, CURATE conducts policy search using

3

sample-based evaluations to determine a curriculum policy that shapes the distribution of tasks used
for training the agent. Intuitively, the curriculum policy learns a local distribution of unsolved tasks
with high rewards that can be sampled for training. As the agent becomes more proficient and
begins solving these tasks, this distribution shifts towards more difficult unsolved tasks, leading
to an approximately easiest-to-hardest curriculum that has been shown to be optimal under certain
conditions [25]. The curriculum policy πc(θ;µθ,Σθ) is represented by a Gaussian distribution over
environment parameters θ with mean µθ and covariance Σθ. The training procedure is summarized
in Sec. 4.1. Section 4.2 describes the curriculum update step, UPDATECURRICULUM.

4.1 Training RL policies with curriculum learning

This section summarizes the procedure for training the RL agent as described in Alg. 1 (App. B).
This training procedure is designed to close the RL training loop around the target task distribution
Mθt , such that RL training ends with only the minimum number of frames needed to solveMθt .
First, the control policy π is initialized randomly. Then, the curriculum policy πc is initialized by the
Gaussian distribution that approximates a uniform distribution over the curriculum space. Thereafter,
the curriculum policy is updated prior to training with the (initially random) control policy π via
UPDATECURRICULUM (Sec. 4.2). For each iteration in the training loop, tasks are sampled from the
curriculum policy πc by first sampling environment parameters θi, which are in turn transformed into
tasks. Then, a trajectory dataset D is generated with mean training reward RD from rollouts of π in
the sampled tasks. Next, π is updated by the reinforcement learning algorithm by performing gradient
updates of policy parameters using the dataset D. Although in principle any on-policy reinforcement
learning algorithm could be used, we use Proximal Policy Optimization (PPO) [41]. Following the
policy update, the curriculum policy πc is updated via UPDATECURRICULUM if the training reward
RD meets or exceeds the task solved threshold RS . This trigger indicates that the agent has mastered
proficiency in its current training distribution and is ready for more challenging tasks. Curriculum
learning can also be triggered if a maximum number of timesteps since the last curriculum update
has been reached. This prevents training stagnation if the current tasks are too difficult for the agent.
Finally, the agent is evaluated on the target task distributionMθt to obtain a task evaluation reward
Rt. We typically conduct stochastic, rather than deterministic, policy evaluation. If the agent solves
the target task (RS ≤ Rt), then training concludes successfully. Otherwise, training continues while
the number of maximum training frames has not been reached.

4.2 Updating the curriculum using curriculum policy search

This section summarizes UPDATECURRICULUM, the curriculum update procedure that is fully de-
scribed in Alg. 2 (App. B). UPDATECURRICULUM is a nonlinear optimization within environmental
parameter space to learn πc by optimizing the curriculum objective Jc(πc):

Jc(πc) = E
θj∼πc,Mθj

∼θj ,Rj∼Mθj
(τ∼π)

[νj], νj =
Rj

RS
1Rj<RS

− λθ||θj ||2 (3)

whereMθj is a task distribution sampled from πc via parameters θj , Rj is the reward obtained by
evaluating π onMθj , νj is the curriculum reward, and λθ is a regularization hyperparameter.

This method conducts evaluations to assess the current proficiency of the agent in a sample-efficient
manner without exhaustive search of the curriculum space. First, the initial parameter distribution for
the curriculum policy πc is provided as (µθ,Σθ). Then, for each of Nr rounds, the agent draws Ns

parameter samples from the curriculum policy parameter distribution (µθ,Σθ). For each parameter
sample θj , the corresponding taskMθj is generated, and the agent is evaluated on this task to yield
reward Rj . However, this reward is not used directly for the curriculum learning reward νj . Instead,
it is assessed whether it meets or exceeds the threshold RS , i.e., the task is solved. If so, the agent
receives zero curriculum reward for this task, as the agent has mastered this task. Otherwise, the
curriculum reward is first assessed as Rj/RS . This reward signal induces the agent towards the
easiest (i.e., highest return) tasks that have not yet been solved. Thereafter, the curriculum learning
reward is regularized by λθ||θj ||2 to become νj . This regularization addresses cases where samples
consistently return zero reward (e.g., at the start of training, all tasks may be too difficult), leading
to a small bias towards easier levels. Then, the parameter samples θj and curriculum reward νj are
appended to buffers. These buffers are used by Relative Entropy Policy Search (REPS) [42] to yield
an updated Gaussian distribution that maximizes the curriculum reward, subject to an information

4

(a) MiniGrid MultiRoom (b) Procgen Leaper (c) Procgen Climber (d) Procgen BossFight

Figure 1: The experimental domains investigated in our work. MiniGrid MultiRoom (a) a 1-
dimensional curriculum space with field-of-view state and direction observations. Leaper (b),
Climber (c), and BossFight (d) have 2-dimensional curriculum spaces with image observations.

Table 1: Description of each curriculum axis for each domain.
Domain MultiRoom Leaper Climber BossFight
Θ1 Num. rooms (1-4) Num. road lanes (0-3) Num. platforms (1-10) Round health (1-9)
Θ2 n/a Num. water lanes (0-3) Enemy prob. % (0-20) Num. rounds (1-5)

loss bound based on Kullback-Leibler divergence [43]. Lastly, the continuous curriculum parameters
(µθ,Σθ) are discretized to yield the updated curriculum policy πc. This process repeats iteratively
Nr times before returning πc at the conclusion of the curriculum update.

5 Experimental results

In this section, we evaluate CURATE against a variety of curriculum baselines, where performance is
quantified by sample efficiency: how much training data is required to train an RL agent to complete
the most difficult tasks within each experimental domain. In our experiments, we seek to answer
two research questions. First, when compared to a variety of curriculum strategies, such as implicit
and explicit curricula, how does CURATE compare when considering a one-dimensional curriculum
space with a limited observation space (Q1)? Second, how does CURATE perform against curriculum
baselines in two-dimensional curriculum spaces with high-dimensional observations (Q2)?

Experimental domains Figure 1 provides an overview of the experimental domains. All domains
use discrete control and discrete environment parameters, varying by the dimensionality of the
curriculum space and the observations. Table 1 describes the domain curriculum spaces. More
information about the experimental domains can be found in Sec. D.

MiniGrid MultiRoom [44] is a one-dimensional curriculum space that is explored for question Q1.
The specific domain is a reimplementation of MultiRoom-Random-N4 [31], except with the typical
MiniGrid observation space of field-of-view state and agent direction.

The Procgen Curriculum Suite (Leaper, Climber, BossFight) contains two-dimensional curriculum
spaces with image observations for question Q2. The three games in the suite are adaptations of
the same games first introduced by Cobbe et al. [45] to structure the levels within each game into a
curriculum space and allow for changing the initial state based on the environment parameters. For
this work, we use the easy distribution mode for all three games.

Train and test procedure All methods use PPO [41] with the Adam optimizer [46] for training the
control policy π. The optimizer runs continuously and is not reset during training. After every control
policy update, the agent is evaluated on the target task distributionMθt . If the return achieved in
Mθt is at least RS , training ends. Otherwise, training continues up to a maximum allowable frames.

Baselines We assess CURATE against a variety of baselines, which can be broadly categorized into
either explicit or implicit curriculum learning algorithms. Explicit curricula structure the sequencing
of training tasks externally, often with knowledge of the environment parameters. In contrast, implicit
curricula emerge through self-discovery by interacting with the tasks based on learning objectives
that do not necessarily access the environment parameters or other task-based schedules.

5

Table 2: Statistics for sample efficiency for MiniGrid MultiRoom in terms of frames required to
either solveMθt or the maximum allowable frames (50 million). C. Type stands for curriculum type.
10 trials are evaluated for each approach. Mean Frames are shown with ± one standard deviation.
Median Frames are shown with ± one interquartile range (IQR). Trials that do not solve the task still
count towards summary statistics and are assessed the maximum allowable frames.

Approach C. Type Success Rate Mean Frames (×106) Median Frames (×106)
CURATE (ours) Explicit 100% 6.114 ± 1.551 5.737 ± 2.006

PLR⊥ Implicit 100% 18.280 ± 1.994 18.156 ± 3.190
ACCEL Implicit 90% 36.905 ± 7.609 34.265 ± 12.490

Dom. Rand. Random 100% 9.418 ± 1.806 9.136 ± 2.447
Incr. Curr. Explicit 100% 4.750 ± 0.608 4.663 ± 0.726

Target None 0% 50.000 ± 0.000 50.000 ± 0.000

Our implicit curriculum baselines are Robust PLR (PLR⊥) [31] and ACCEL [30]. PLR⊥ focuses on
student replay of levels, extending PLR [31] by only updating the agent on replayed levels. ACCEL
[30] randomly mutates levels replayed by the student and starts from the easiest set of tasks.

Our curriculum baselines without learning are Domain Randomization (DR), Incremental Curriculum
(IC), and Target (NC). DR represents a random curriculum. IC is an explicit baseline that represents
a hand-designed, easiest-to-hardest curriculum that incrementally increases the task difficulty. Please
refer to App. C for how IC is algorithmically generated. For less complex domains, IC can also be
considered a pseudo-oracle and an approximation of ground truth. Lastly, NC represents only training
on the target tasks without a curriculum.

5.1 Q1: One-dimensional curricula: MiniGrid MultiRoom

MiniGrid MultiRoom requires the agent to master grid-based navigation within the MiniGrid do-
main [44]. In this domain, tasks consist of mazes composed of random numbers of rooms linked to-
gether, from 1 room to 4 rooms. Each task is specified by the environmental parameter θ ∈ {1, 2, 3, 4}
that specifies the number of rooms. The agent must navigate from the starting room to the goal, which
is always contained in the last room. Therefore, the target task distributionMθt requires the agent to
solve a distribution of mazes with 4 rooms. MultiRoom is a sparse reward domain; the agent receives
a time-discounted reward only upon solving a task. The task solved threshold RS is 0.7.

Results Results for MiniGrid MultiRoom are shown in Tab. 2, which provides the summary
statistics for each approach. Please see App. E for more results, including a visualization of summary
statistics (Fig. 5) and representative curricula for each approach (Fig. 6).

In general, CURATE outperforms all approaches except for IC, which can be viewed as a ground truth
curriculum in this domain. The performance gap between CURATE and the DCD algorithms, PLR⊥

and ACCEL, is relatively large. Although these algorithms yield a greater increase in training agent
return, the increase in target task return is gradual. The implicit currricula that are learned appear to
stagnate and reach equilibrium after the training return can no longer be maximized. DR provides a
stronger performance than the DCD algorithms, as random curriculum exploration is viable given
the relatively bounded nature of Θ in this domain. Lastly, NC represents the performance without
using a curriculum. Overall, performance is markedly poor: no trials were successful. The target task
distribution is too difficult to solve directly due to the exploration problem that uninformed agents
face. CURATE addresses this exploration problem by dynamically changing to simpler tasks, leading
to success early that can be bootstrapped into solving harder tasks.

5.2 Q2: Two-dimensional curricula: Procgen Curriculum Suite

The Procgen Curriculum Suite presents more challenging domains for curriculum learning. Curricu-
lum spaces are two-dimensional, and the agent receives an image-based observation of the game.
The target task distributionMθt for each Procgen game are as follows: for Leaper, tasks with 3 road
lanes and 3 water lanes; for Climber, tasks with 10 platforms and 20% enemy spawn probability; and
for BossFight, tasks with 9 health per round and 5 rounds. The task solved threshold RS is either 8
(Leaper) or 10 (Climber, BossFight). Leaper is a sparse reward domain, where the agent receives 10

6

Table 3: Results for the Procgen Curriculum Suite in terms of frames required to either solveMθt
or the maximum allowable frames. C. Type stands for curriculum type. 1 trial is evaluated for each
approach. Frames are listed in (×106). For Success, ✓ meansMθt was solved, and X otherwise.

Leaper Climber BossFight

Approach C. Type Frames Success Frames Success Frames Success
CURATE (ours) Explicit 9.372 ✓ 22.544 ✓ 40.108 ✓

PLR⊥ Implicit 99.975 X 99.942 X 99.877 X
ACCEL Implicit 99.975 X 99.877 X 99.615 X

Dom. Rand. Random 17.629 ✓ 32.113 ✓ 64.225 ✓
Incr. Curr. Explicit 12.354 ✓ 24.707 ✓ 53.740 ✓

Target None 99.975 X 23.855 ✓ 86.770 ✓

reward only when solving a task. In contrast, Climber and BossFight are less sparse, offering small
rewards throughout the task in addition to a larger reward when the task is solved.

Results Results for the Procgen Curriculum Suite are presented in Tab. 3. For visualizations, please
see App. F. In these more complex domains, CURATE continues to outperform DR, PLR⊥, and
ACCEL. Notably, CURATE now shows promising performance against IC, although the margin is
relatively narrow for Leaper and Climber. We hypothesize that multidimensional curriculum spaces
offer opportunities for CURATE to forge the path of least learning through the curriculum based
on the agent’s competence. This approach contrasts with IC, which approximates the shortest path
curriculum but may not be optimal in general. Although NC is unsuccessful for Leaper, this approach
is viable for Climber and BossFight due to these games having less sparse rewards. Nevertheless,
we see that CURATE usually offers greater sample efficiency than not using a curriculum, although
the difference is small with Climber. Although our Procgen experiments are only for one trial, we
believe that our results present a compelling proof-of-concept that warrants further study.

6 Conclusion

We present CURATE, an automatic curriculum learning approach for training a model-free, on-policy
reinforcement learning agent to complete a difficult target task distribution with sparse rewards.
CURATE navigates a curriculum through policy search in the curriculum space to establish the best
task distribution that matches the agent’s current competence. In so doing, CURATE’s “exploration
by exploitation” approach addresses fundamental exploration challenges through curriculum learning.
Moreover, CURATE is effective in discontinuous curriculum spaces without requiring optimal initial-
izations or starting in the easiest tasks. Initial results demonstrate that CURATE outperforms recent
state-of-the-art DCD algorithms and most curriculum learning baselines. Although an incremental
curriculum was more sample efficient in a one-dimensional curriculum for grid-based navigation,
CURATE offers promising performance in two-dimensional curriculum spaces with selected Procgen
games. We hypothesize that multidimensional curriculum spaces may showcase CURATE’s ability to
learn curricula where the best task sequencing is not obvious to specify a priori.

Limitations Although CURATE offers promising performance for automatically learning curricula,
it is important to note CURATE’s assumptions. CURATE requires that the curriculum space is
defined, accessible, and structured in difficulty order along certain axes of task variation. These
assumptions permit the curriculum policy search that powers CURATE. CURATE also assumes
that task evaluations are not limited (e.g., if the target task distribution can only be attempted once).
Currently, CURATE’s runtime scales with task evaluations, but more efficient ways of exploring
high-dimensional curriculum spaces can be investigated to limit the number of task evaluations.

Future work We will explore avenues to address CURATE’s assumptions and assess CURATE
against more algorithms, such as ALP-GMM [28], PAIRED [29], and Random Network Distilla-
tion [47]. We will also evaluate CURATE on continuous control domains, such as robotic control.
We are also interested in how cognitive psychology insights into how humans approach curriculum
learning [48–50] can inform extensions for CURATE, as well as how lessons learned from CURATE
can inform new algorithms for Unsupervised Environment Design.

7

Acknowledgments and Disclosure of Funding

We gratefully acknowledge the following support for our research: IVADO, including the Postdoctoral
Funding Program; the Natural Sciences and Engineering Research Council of Canada (NSERC);
the Canadian Institute for Advanced Research (CIFAR); and the National Institute of Standards and
Technology of the United States (NIST, award no. 70NANB23H178). We also gratefully acknowledge
compute resources provided by Mila and NVIDIA. We thank the Mila IDT team, including Fabrice
Normandin and Olexa Bilaniuk, for their help and support. We also thank Minqi Jiang and Michael
Dennis for their helpful insight into our work.

References
[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA, 2nd edition, 2018.
[2] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement Learning:

A Survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.
[3] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning. Nature, 521:436–444,

2015.
[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv
preprint arXiv:1312.5602, 2013.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-Level Control through Deep Reinforcement
Learning. Nature, 518:529–533, 2015.

[7] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. A General Reinforcement Learning Algorithm that
Masters Chess, Shogi, and Go through Self-Play. Science, 362(6419):1140–1144, 2018.

[8] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P.
Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin
Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu
Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKin-
ney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris
Apps, and David Silver. Grandmaster Level in StarCraft II using Multi-Agent Reinforcement
Learning. Nature, 575:350–354, 2019.

[9] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider,
Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning
Dexterous In-Hand Manipulation. The International Journal of Robotics Research, 39(1):3–20,
2019.

[10] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei Zhang. Solving Rubik’s Cube with a Robot Hand. arXiv preprint arXiv:1910.07113,
2019.

[11] Yuxi Li. Deep Reinforcement Learning. arXiv preprint arXiv:1810.06339, 2018.
[12] Shengbo Eben Li. Deep Reinforcement Learning. Reinforcement Learning for Sequential

Decision and Optimal Control, pages 365–402, 2023.
[13] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum Learning.

International Conference on Machine Learning (ICML), 2009.

8

[14] Xin Wang, Yudong Chen, and Wenwu Zhu. A Survey on Curriculum Learning. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 44(9), 2022.

[15] Jeffrey L Elman. Learning and Development in Neural Networks: The Importance of Starting
Small. Cognition, 48(1):71–99, 1993.

[16] Henk G. Schmidt, Sofie M. M. Loyens, Tamara Van Gog, and Fred Paas. Problem-Based Learn-
ing is Compatible with Human Cognitive Architecture: Commentary on Kirschner, Sweller, and
Clark (2006). Educational Psychologist, 42(2):91–97, 2007.

[17] Sofie M. M. Loyens, Joshua Magda, and Remy M. J. P. Rikers. Self-Directed Learning in
Problem-Based Learning and its Relationships with Self-Regulated Learning. Educational
Psychology Review, 20:411–427, 2008.

[18] Louis Alfieri, Patricia J. Brooks, Naomi J. Aldrich, and Harriet R. Tenenbaum. Does Discovery-
Based Instruction Enhance Learning? Journal of Educational Psychology, 103(1):1–18, 2011.

[19] Faisal Khan, Xiaojin Zhu, and Bilge Mutlu. How Do Humans Teach: On Curriculum Learning
and Teaching Dimension. Neural Information Processing Systems (NIPS), 2011.

[20] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter
Stone. Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey.
Journal of Machine Learning Research, 21(181):1–50, 2020.

[21] Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Auto-
matic Curriculum Learning For Deep RL: A Short Survey. International Joint Conference on
Artificial Intelligence (IJCAI), 2021.

[22] Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie Miao, Theresa
Eimer, Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, Frank Hutter, and
Marius Lindauer. Automated Reinforcement Learning (AutoRL): A Survey and Open Problems.
Journal of Artificial Intelligence Research, 74:517–568, 2022.

[23] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley. Paired Open-Ended Trailblazer
(POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and
Their Solutions. arXiv preprint arXiv:1901.01753, 2019.

[24] Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth
Stanley. Enhanced POET: Open-Ended Reinforcement Learning through Unbounded Invention
of Learning Challenges and their Solutions. International Conference on Machine Learning
(ICML), 2020.

[25] Qiyang Li, Yuexiang Zhai, Yi Ma, and Sergey Levine. Understanding the Complexity Gains of
Single-Task RL with a Curriculum. International Conference on Machine Learning (ICML),
2023.

[26] Joel Z. Leibo, Edward Hughes, Marc Lanctot, and Thore Graepel. Autocurricula and the
Emergence of Innovation from Social Interaction: A Manifesto for Multi-Agent Intelligence
Research. arXiv preprint arXiv:1903.00742, 2019.

[27] Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu.
Automated Curriculum Learning for Neural Networks. International Conference on Machine
Learning (ICML), 2017.

[28] Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher Algorithms
for Curriculum Learning of Deep RL in Continuously Parameterized Environments. Conference
on Robot Learning (CoRL), 2020.

[29] Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew
Critch, and Sergey Levine. Emergent Complexity and Zero-Shot Transfer via Unsupervised
Environment Design. Neural Information Processing Systems (NeurIPS), 2020.

[30] Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-Guided Adversarial Environment Design. Neural Information Processing
Systems (NeurIPS), 2021.

[31] Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized Level Replay. International
Conference on Machine Learning (ICML), 2021.

[32] Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving Curricula with Regret-Based Environment Design.
International Conference on Machine Learning (ICML), 2022.

9

[33] Mikayel Samvelyan, Akbir Khan, Michael Dennis, Minqi Jiang, Jack Parker-Holder, Jakob
Foerster, Roberta Raileanu, and Tim Rocktäschel. MAESTRO: Open-Ended Environment
Design for Multi-Agent Reinforcement Learning. International Conference on Learning
Representations (ICLR), 2023.

[34] Ishita Mediratta, Minqi Jiang, Jack Parker-Holder, Michael Dennis, Eugene Vinitsky, and
Tim Rocktäschel. Stabilizing Unsupervised Environment Design with a Learned Adversary.
Conference on Lifelong Learning Agents (CoLLAs), 2023.

[35] Michael Beukman, Samuel Coward, Michael Matthews, Mattie Fellows, Minqi Jiang, Michael
Dennis, and Jakob Foerster. Refining Minimax Regret for Unsupervised Environment Design.
International Conference on Machine Learning (ICML), 2024.

[36] K. J. Åström. Optimal Control of Markov Processes with Incomplete State Information. Journal
of Mathematical Analysis and Applications, 10(1):174–205, 1965.

[37] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and Acting in
Partially Observable Stochastic Domains. Artificial Intelligence, 101(1-2):99–134, 1998.

[38] Yasin Abbasi-Yadkori and Gergely Neu. Online Learning in MDPs with Side Information.
arXiv preprint arXiv:1406.6812, 2014.

[39] Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual Markov Decision Processes.
arXiv preprint arXiv:1502.02259, 2015.

[40] Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov Decision Processes with
Continuous Side Information. Algorithmic Learning Theory, 2018.

[41] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347, 2017.

[42] Jan Peters, Katharina Mülling, and Yasemin Altün. Relative Entropy Policy Search. AAAI
Conference on Artificial Intelligence, 2010.

[43] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathematical
Statistics, 22(1):79–86, 1951.

[44] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & Miniworld:
Modular & Customizable Reinforcement Learning Environments for Goal-Oriented Tasks.
Neural Information Processing Systems (NeurIPS), 2023.

[45] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging Procedural Generation
to Benchmark Reinforcement Learning. International Conference on Machine Learning (ICML),
2020.

[46] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations (ICLR), 2015.

[47] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by Random
Network Distillation. International Conference on Learning Representations (ICLR), 2019.

[48] Annya Dahmani*, Eunice Yiu*, Nan Rosemary Ke, Tabitha Edith Lee, Oliver Kroemer, and
Alison Gopnik. Toward Understanding Automated Causal Curriculum Learning in Humans and
Reinforcement Learning Agents. The 6th International Workshop on Intrinsically Motivated
Open-ended Learning (IMOL), 2023. *Equal contribution.

[49] Annya Dahmani*, Eunice Yiu*, Nan Rosemary Ke, Tabitha Edith Lee, Oliver Kroemer, and
Alison Gopnik. Toward Understanding Automated Causal Curriculum Learning in Humans
and Reinforcement Learning Agents. Interactive Causal Learning Conference (ICLC), 2023.
*Equal contribution.

[50] Annya Dahmani*, Eunice Yiu*, Tabitha Edith Lee, Nan Rosemary Ke, Oliver Kroemer, and
Alison Gopnik. From Child’s Play to AI: Insights into Automated Causal Curriculum Learning.
Intrinsically Motivated Open-ended Learning Workshop, Thirty-seventh Conference on Neural
Information Processing Systems (IMOL@NeurIPS), 2023. *Equal contribution.

10

A Intuition for CURATE

Figure 2 illustrates the intuition behind CURATE.

Figure 2: The CURATE algorithm automatically learns a curriculum for training a RL agent to
complete a target task distribution that is initially too difficult for the agent. CURATE sequences the
RL agent’s training data by altering the difficulty of the training task distribution. The RL agent’s
current capability, or competence, is a measure of its performance in relatively more difficult tasks. In
this visualization, the tasks offered by CURATE are initially too difficult, leading to a simplification
of tasks. Once the RL agent begins solving these simple tasks, CURATE dynamically adjusts the
training data accordingly to offer harder tasks. Finally, the agent solves the target task distribution at
the end, indicating that training can conclude. Scenes are from the MiniGrid MultiRoom domain
(Sec. 5.1).

B CURATE algorithms

Algorithm 1 (CURATE) describes the training procedure used to train RL agents using CURATE in
this work. Algorithm 2 (UPDATECURRICULUM) describes the policy search procedure that CURATE
uses to learn the curriculum policy πc during training.

C Incremental curriculum algorithm

The incremental curriculum baseline in Sec. 5 approximates a handcrafted curriculum that a domain
expert may design. Specifically, the incremental curriculum sequentially visits tasks in increasing
order of difficulty, approximating a straight line that forms the shortest path curriculum through
the curriculum space. (Note that the incremental curriculum does not directly traverse the shortest
path curriculum, as the incremental curriculum only increments one dimension of the environment
parameters at a time to prevent training instability.) Figure 3 shows the incremental curricula that were
used for Leaper, Climber, and BossFight. We generate the incremental curriculum algorithmically
using Alg. 3 (GENERATEINCREMENTALCURRICULUM), given the environment parameters of the
easiest task θi and the environment parameters of the target task θt.

Algorithm 3 yields the lowest error approximation of a straight line through the curriculum subject to
sequential, cyclic increments of each environment parameter, starting from the easiest task parameters
θi until the target task parameters θt are reached. Intuitively, each dimension of the environment
parameters is incremented by a multiple of the respective dimension of ∆θ (which for our experiments,
is always one). This multiple is the minimum multiple that yields a curriculum point θ′ that has
dimension d greater than the same dimension of curriculum point θ′SP , which is the projection onto
the shortest path curriculum in the direction of the increment. An incremental curriculum is generated

11

Algorithm 1: CURATE: CURRICULUM AGENT FOR TARGETED EXPLORATION

Input: target taskMθt , task solved threshold RS , maximum number of training frames fmax,
number of parallelized workers Nv , curriculum advancement on solve ∆µθ, curriculum
covariance for update Σθu , maximum frames between curriculum updates ∆fsync

Initialize: training indicator train← True, target task solved indicator converged← False,
number of training frames f ← 0, control policy π ← INITIALIZERANDOMPOLICY(),
curriculum policy and parameters
πc, µθ,Σθ ← INITIALIZERANDOMCURRICULUMPOLICY(), previous curriculum update
frame fprev ← 0

// Initial curriculum policy update
πc, µθ,Σθ ← UPDATECURRICULUM(πc, µθ,Σθ, π)
while train do

// Sample tasks from the curriculum
Mθc ← ∅
for i = 1 to Nv do

θi ∼ πc

Mθi ← TASKGENERATOR(θi)

Mθc

+←Mθi
end
// Collect experience
D, RD ← ROLLOUTAGENTONPARALLELTASKS(π,Mθc)
// Update policy
π ← UPDATEAGENT(π,D)
f = f + NUMFRAMES(D)
// Update curriculum policy
if RS ≤ RD then

πc, µθ,Σθ ← UPDATECURRICULUM(πc, µθ +∆µθ,Σθu , π)
fprev ← f

else if ∆fsync ≤ (f − fprev) then
πc, µθ,Σθ ← UPDATECURRICULUM(πc, µθ,Σθu , π)
fprev ← f

// Evaluate agent on target task
Rt ← EVALUATEAGENT(π,Mθt)
// Determine whether to continue training
if RS ≤ Rt then

train← False
converged← True

if fmax ≤ f then
train← False

end

Result: control policy π, target task solved indicator converged, number of frames f

12

(a)

(b)

(c)

Figure 3: Incremental curriculum for (a) Leaper, (b) Climber, and (c) BossFight.

13

Algorithm 2: UPDATECURRICULUM: Curriculum update for CURATE
Input: curriculum policy πc, initial curriculum policy mean µθ0 , initial curriculum policy

covariance Σθ0 , control policy π, task solved threshold RS , parameter regularization λθ,
number of rounds Nr, samples per round Ns, relative entropy bound ϵ, minimum
temperature η

Initialize: µθ ← µθ0 , Σθ ← Σθ0

for i = 1 to Nr do
// Reset buffers
θeval ← ∅
νeval ← ∅
for j = 1 to Ns do

// Sample task
θj ∼ N (µθ,Σθ)
Mθj ← TASKGENERATOR(θj)
// Evaluate agent on sampled task
Rj ← EVALUATEAGENT(π,Mθj)
// Determine reward for curriculum learning
if Rj < RS then

νj,init ← Rj/RS

else
νj,init ← 0

νj ← νj,init − λθ||θj ||2
// Append to buffers

θeval
+← θj

νeval
+← νj

end
// Run REPS and update curriculum policy
µθ,Σθ ← REPSUPDATE(θeval,νeval, ϵ, η)
πc ← DISCRETIZEGAUSSIAN(µθ,Σθ)

end

Result: updated curriculum policy πc, updated curriculum policy mean µθ, updated curriculum
policy covariance Σθ

for each possible starting increment of the first dimension, then the incremental curriculum with the
least error is returned.

D Experimental details

Implementation Our work is implemented within the Dual Curriculum Design (DCD) code-
base [30].1 We use the official implementations of PLR⊥ and ACCEL as provided in this codebase.

Task solved threshold The task solved threshold RS indicates when a task has been solved based
on its reward. An agent that receives a reward of at least RS on a task is said to have solved a task.
This threshold is used to determine when training is no longer needed in a few ways in this work:

1. When the evaluation reward obtained on the target task distribution meets or exceeds RS ,
the RL training procedure concludes.

2. CURATE uses RS to calculate the rewards ν used for the curriculum policy, which favors
learning the set of easiest tasks not yet solved.

3. RS is used by the incremental curriculum baseline to indicate when it is time to advance to
the next set of tasks in the curriculum.

1https://github.com/facebookresearch/dcd

14

https://github.com/facebookresearch/dcd

Algorithm 3: GENERATEINCREMENTALCURRICULUM: Generate incremental curriculum
Input: easiest environment parameters θi, target environment parameters θt
Initialize: environment parameter dimensionality Nd ← dim(θi), environment parameter

increment ∆θ ← 1⃗, shortest path curriculum vector v⃗SP ← θt − θi, shortest path curriculum
vector magnitude v̂SP ← v⃗SP /||v⃗SP ||2, number of curriculum steps per dimension
N∆ ← {ceil(v⃗SP [d] /∆θ[d]) | d ∈ [1, Nd]}, total number of curriculum steps
NΣ∆

←
∑Nd

d=1 N∆[d], candidate incremental curricula Ci ← ∅, candidate incremental
curricula errors ei ← ∅

// Loop over all possible initial increments
for N ′

∆,init = 1 to N∆[1] do
θ′ ← θi
θ′SP ← θi
N ′

∆ ← 0
C′
i ← {θi}

e′i ← 0
while N ′

∆ < NΣ∆
do

for d = 1 to Nd do
while ((θ′[d] ≤ θ′SP [d]) or (N ′

∆ < N ′
∆,init)) and (θ′[d] < θt[d]) do

// Increment environment parameter along specified dimension
θ′[d]← min(θ′[d] + ∆θ[d], θt[d])
// Update steps taken and add to incremental curriculum
N ′

∆ ← N ′
∆ + 1

C′
i

+← θ′

// Calculate error with respect to shortest path
v⃗θ′ ← θ′ − θi
he ← v⃗θ′ · v⃗SP / ||v⃗SP ||22
v⃗proj ← he · v⃗SP

v⃗⊥ ← v⃗θ′ − v⃗proj
e′i ← e′i + ||v⃗⊥||2

end
// Update point on the shortest path
hSP ← (θ′[d]− θi[d]) / v̂SP [d]
θ′SP ← hSP · v̂SP + θi

end
end
// Append to buffers

Ci
+← C′

i

ei
+← e′i

end
// Choose the incremental curriculum with the least error
ih ← argmin(ei)
Ci,min ← Ci[ih]

Result: incremental curriculum with least error approximation to the shortest path Ci,min

15

We assume that RS is provided as part of the task definition. In practice, we train an RL agent using
a random curriculum (i.e., domain randomization) to obtain what the maximum achievable reward in
the target task distribution is. Then, we set RS slightly below that value.

Maximum number of training frames The maximum allowable frames fmax provides an upper
limit to how long the RL agent is trained. Generally, it is determined as 2-5 times the average frames
required for a random curriculum (i.e., domain randomization) to reach a target reward of at least RS .

D.1 MiniGrid MultiRoom Navigation

MiniGrid MultiRoom requires the RL agent to master grid-based navigation within the MiniGrid
domain [44]. In MultiRoom, the agent must navigate through a series of rooms that are sequentially
connected with doors separating the rooms. The agent always starts in the first room, and the goal
always exists in the last room. The environment is a reimplementation of MultiRoom-Random-
N4 [31]. However, we use the typical MiniGrid observation space as described below.

Observation space The agent receives two observations:

1. A field-of-view observation consisting of the states of the world within a 7 x 7 grid within
the agent’s line of sight. The agent cannot see through walls.

2. The direction the agent is facing, represented as an integer with one of four values that each
represent a different direction.

Action space The agent uses discrete actions with action space |A| = 7. The actions include
turning left, turning right, going forward, picking up an object, dropping an object, toggling the
activation for an object, and doing nothing. As there are no objects for the agent to pick up in this
domain, the actions for picking up and dropping an object have no effect. Toggling the activation in
front of a door will either open it (if closed) or close it (if opened).

Reward The agent receives a time-discounted reward when solving the level by reaching the goal;
zero reward is received otherwise. A task is considered solved if the agent receives at least 0.7 reward.

Curriculum space MultiRoom is a one-dimensional curriculum space, where the curriculum axis
θ1 = [1, 4] controls the number of rooms in each task.

Target task distribution For MultiRoom, the agent must solve a task distribution consisting of
θt = 4 rooms.

D.2 Procgen Curriculum Suite

Procgen, as introduced by Cobbe et al. [45], tasks RL agents to master different types of discrete
control games. For our experiments, we select three representative games from Procgen: Leaper,
Climber, and BossFight.

In our work, each game is adapted such that each level can be changed by specifying causal interven-
tions in the environment parameters to change the initial level state. For example, the intervention
do(θ1 = 1, θ2 = 3) on level seed 0 in Leaper would yield the same level as without interventions,
except with 1 road lane and 3 water lanes. Please refer to Fig. 4 for a visualized example. Note that
for Leaper, intervention on these parameters may change other aspects of the initial state, such as
the initial placement of cars and logs. Therefore, for Leaper, partial entanglement exists between
Θ and other variables in the environment. However, for Climber and BossFight, Θ is completely
disentangled from the rest of the level generation process.

We implement our extensions of Procgen within the Procgen fork used by Jiang et al. [31]2

Observation space The agent receives a 64 x 64 RGB image observation of the game.

2https://github.com/minqi/procgen

16

https://github.com/minqi/procgen

Action space The agent uses discrete actions with action space |A| = 15. The actions generally
correspond to eight directional actions, six special actions, and one action that does nothing. The
actions are game-specific; please refer to Cobbe et al. [45] for a complete description.

Distribution mode We use the easy distribution mode of Procgen to avoid extra computational
resources that would be required for the hard distribution mode.

Reward The rewards for Procgen games are game-specific. For Leaper, the agent receives 10
reward when reaching the goal (zero otherwise). Climber and BossFight are less sparse than Leaper.
In Climber, the agent receives 10 reward for completing a level by collecting all the coins. Collecting
a coin provides 1 reward. For BossFight, the agent receives 10 reward for defeating the boss. The
fight is split into separate rounds, and completing a round provides 1 reward.

Curriculum space: Leaper The curriculum axes specify the number of road lanes (θ1 = [0, 3])
and number of water lanes (θ2 = [0, 3]).

Curriculum space: Climber The curriculum axes are defined as the number of platforms (θ1 =
[1, 10]) and percentage of an enemy spawning at each platform (θ2 = [0, 20]).

Curriculum space: BossFight The curriculum axes control the number of health points of the
boss per round (θ1 = [1, 9]) and the total number of rounds (θ2 = [1, 5]).

Target task distribution Generally, the target task distribution for each game contains the hardest
levels that would be obtained in each game under the easy distribution mode (i.e., θt = max(Θ)). In
other words, no level is harder than what would have been possible to experience when randomly
sampling levels from Procgen.

D.3 Hyperparameters

Table 4 presents the experimental hyperparameters. For MiniGrid MultiRoom, we generally use
the hyperparameters from Jiang et al. [30] for their MiniGrid experiments, except with 16 parallel
environments instead of 32 to run experiments with less computational resources. The PPO rollout
length was chosen as 192 to fit at least two episodes of duration 80 into the rollout. For Procgen, we
generally use the same hyperparameters as the Procgen experiments in Jiang et al. [31] for the easy
distribution. However, we use the episode length as defined by each game, and set the PPO rollout
length to the nearest power of two. Then, we select minibatches per epoch such that each minibatch
has 2048 samples, the same as in Jiang et al. [31].

For PLR⊥, we generally use the same hyperparameters as Jiang et al. [30] for MultiRoom and Jiang
et al. [31] for Procgen. Our ACCEL hyperparameters come from Jiang et al. [30].

E Supplemental results for MiniGrid MultiRoom

Figure 5 visualizes the summary statistics first described in Tab. 2. Figure 6 presents a representative
curricula and training/target learning curves for each approach. The representative trial for each
approach is the closest trial to the median of all 10 trials used for that approach.

F Supplemental results for Procgen Curriculum Suite

Each approach’s learning curves and curricula are visualized for Leaper (Figs. 7–8), Climber (Figs. 9–
10), and BossFight (Figs. 11–12).

17

(a) (R0, W0) (b) (R0, W1) (c) (R0, W2) (d) (R0, W3)

(e) (R1, W0) (f) (R1, W1) (g) (R1, W2) (h) (R1, W3)

(i) (R2, W0) (j) (R2, W1) (k) (R2, W2) (l) (R2, W3)

(m) (R3, W0) (n) (R3, W1) (o) (R3, W2) (p) (R3, W3)

Figure 4: Example of variations in initial scenes for Leaper based on selection of environment
parameters. Each figure represents an example task within the task distribution corresponding to the
chosen environment parameters. For example, (h) represents a task with θ1 = 1 road lane and θ2 = 3
water lanes. All scenes are based on level seed 0.

18

Table 4: Hyperparameters used for experiments. Note that for CURATE, Nr and λθ can take different
values depending on whether it is the initial curriculum update or not.

Hyperparameter MultiRoom Leaper Climber BossFight
Discount factor γ 0.995 0.999 0.999 0.999

λGAE 0.95 0.95 0.95 0.95
Rollout length 192 512 1024 4096

Epochs 5 3 3 3
Minibatches per epoch 1 16 32 128

Clip range 0.2 0.2 0.2 0.2
Number of parallel environments Nv 16 64 64 64

Return normalization no yes yes yes
Entropy bonus coefficient 0.0 0.01 0.01 0.01

Value loss coefficient 0.5 0.5 0.5 0.5
Max gradient norm 0.5 0.5 0.5 0.5
Adam learning rate 0.0001 0.0005 0.0005 0.0005

Adam ϵ 0.00001 0.00001 0.00001 0.00001
Recurrent agent yes no no no

Action space dimensionality |A| 7 15 15 15
Episode length 80 500 1000 4000

Reward threshold RS 0.7 8.0 10.0 10.0
Min. number of target episodes per eval. 128 64 64 64

Curriculum space dimensionality |Θ| 1 2 2 2
Curriculum space for Θ1 [1, 4] [0, 3] [1, 10] [1, 9]
Curriculum space for Θ2 n/a [0, 3] [0, 20] [1, 5]

Max. train frames fmax (×106) 50.000 100.000 100.000 100.000
Replay rate 0.5 0.5 0.5 0.5

PLR prioritization rank rank rank rank
Temperature β 0.3 0.1 0.1 0.1

Staleness coefficient ρ 0.3 0.1 0.1 0.1
Replay buffer size 4000 4000 4000 4000

Scoring function loss positive value L1 value L1 value L1 value
Edit rate 1.0 1.0 1.0 1.0

Replay rate 0.8 0.8 0.8 0.8
Number of edits 3 3 3 3

Edit method random random random random
Levels edited easy easy easy easy

Number rounds Nr 2/2 4/2 4/2 4/2
Samples per round Ns 8 16 16 16

Regularization hyperparameter λθ 0.0125/0.0125 0.024/0.0 0.005/0.0 0.01/0.0
REPS relative entropy bound ϵ 0.75 0.75 0.75 0.75
REPS minimum temperature η 0.05 0.05 0.05 0.05

Max. update frames ∆fsync (×106) 0.393 4.194 8.389 33.554

19

Figure 5: Median statistics for sample efficiency for MiniGrid MultiRoom. The approach success rate
is displayed beneath each approach’s name. D. Rand stands for Domain Randomization. Incr. stands
for Incremental Curriculum. All trials for Target yielded the maximum allowable frames (50 million)
with a 0% success rate.

20

(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Incremental Curriculum (f) Target

Figure 6: Representative curriculum learning time histories for each approach in MiniGrid MultiRoom.
Each time history shows the trial that is closest to the median performance of all 10 trials for each
approach. The top figure shows the time history of the return, shown for the training environments
and the target task. The bottom figure shows the time history of the curriculum, with time average
discretization of 10 updates to better show long-term trends.

21

(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Incremental Curriculum (f) Target

Figure 7: Curriculum learning time histories for each approach in Leaper. The top figure shows the
time history of the return, shown for the training environments and the target task. The bottom figures
show the time history of the curriculum, with time average discretization of 10 updates to better show
long-term trends.

22

(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Incremental Curriculum (f) Target

Figure 8: Curriculum for each approach in Leaper as represented by the mean environment parameters
of the training tasks with time average discretization of 10 updates to better show long-term trends.
Note that the colorbar for each figure has a different maximum value.

23

(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Incremental Curriculum (f) Target

Figure 9: Curriculum learning time histories for each approach in Climber. The top figure shows
the time history of the return, shown for the training environments and the target task. The bottom
figures show the time history of the curriculum, with time average discretization of 10 updates to
better show long-term trends.

24

(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Incremental Curriculum (f) Target

Figure 10: Curriculum for each approach in Climber as represented by the mean environment
parameters of the training tasks with time average discretization of 10 updates to better show long-
term trends. Note that the colorbar for each figure has a different maximum value.

25

(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Incremental Curriculum (f) Target

Figure 11: Curriculum learning time histories for each approach in BossFight. The top figure shows
the time history of the return, shown for the training environments and the target task. The bottom
figures show the time history of the curriculum, with time average discretization of 10 updates to
better show long-term trends.

26

(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Incremental Curriculum (f) Target

Figure 12: Curriculum for each approach in BossFight as represented by the mean environment
parameters of the training tasks with time average discretization of 10 updates to better show long-
term trends. Note that the colorbar for each figure has a different maximum value.

27

	Introduction
	Related work
	Preliminaries
	Underspecified POMDPs
	Curriculum learning within UPOMDPs

	Methodology
	Training RL policies with curriculum learning
	Updating the curriculum using curriculum policy search

	Experimental results
	Q1: One-dimensional curricula: MiniGrid MultiRoom
	Q2: Two-dimensional curricula: Procgen Curriculum Suite

	Conclusion
	Intuition for CURATE
	CURATE algorithms
	Incremental curriculum algorithm
	Experimental details
	MiniGrid MultiRoom Navigation
	Procgen Curriculum Suite
	Hyperparameters

	Supplemental results for MiniGrid MultiRoom
	Supplemental results for Procgen Curriculum Suite

